

REPRESENTATIONS OF $GL(n, \mathbb{C})$

EXAMPLES STANDARD, SYMMETRIC POWER

EXTERIOR POWER REPS

"ADJOINT REPS".

DEF. A REP'N OF $GL(n, \mathbb{C})$ IS A
CONTINUOUS HOMOMORPHISM $\pi : GL(n, \mathbb{C}) \rightarrow GL(V)$
V A F.D. COMPLEX V.S. REQUIRE N
TO BE ANALYTIC.

FOR EXAMPLE IF $V = \mathbb{C}^n$ $GL(V) = GL(n, \mathbb{C})$

THE IDENTITY MAP

$\pi_{st.} : GL(n, \mathbb{C}) \rightarrow GL(n, \mathbb{C}) = GL(n)$

IS A REP'N. BUT COMPLEX
CONJUGATION IS NOT

CONJ: $GL(n, \mathbb{C}) \rightarrow \underline{GL}(n, \mathbb{C})$
 $A \mapsto \bar{A}$

NOT ANALYTIC.

Given a rep'n $\pi: GL(n, \mathbb{C}) \xrightarrow{\sim} GL(V)$

its character $\chi_\pi: G \rightarrow \mathbb{C}$

$$\chi_\pi(g) = \text{tr } \pi(g)$$

FACT IS THAT χ_π DETERMINES THE REPRESENTATION.

SKETCH OF PROOF:

$GL(n, \mathbb{C}) \supset U(n)$ UNITARY GROUP

$U(n)$ IS COMPACT. REPS OF $GL(n, \mathbb{C})$

AND $U(n)$ ARE THE SAME IN SENSE

THAT EVERY REP'R OF $U(n)$ CAN BE

EXTENDED UNIQUELY TO A REP'R OF $GL(n, \mathbb{C})$

AND EVERY REP'R OF $GL(n, \mathbb{C})$ ARISES

UNIQUELY THIS WAY.

TO SEE THE REP'R'S OF $GL(n, \mathbb{C})$ ARE DETERMINED BY THEIR CHARACTERS WE

PROVE THE SAME THING FOR $U(n)$.

THIS FOLLOWS FROM SCHUR ORTHOGONALITY.

IF π_1, π_2 ARE IRREDUCIBLE

$$\int_{U(n)} \overline{\chi_{\pi_1}(g)} \chi_{\pi_2}(g) dg = 1 \text{ IF } \pi_1 \cong \pi_2 \\ 0 \text{ IF } \pi_1 \neq \pi_2$$

GIVEN A GENERAL REP'N (π, V)

WE CAN DECOMPOSE

$$V = \bigoplus_{i=1}^n d_i V_i \quad \chi_{\pi} = \sum_i d_i \chi_i$$

V_i ARE IRREDUCIBLE. THEN

$$d_i = \int_{U(n)} \overline{\chi_i(g)} \chi_{\pi}(g) dg$$

SO WE CAN RECONSTRUCT π FROM

ITS CHARACTER. $U(n)$ AND $GL(n, \mathbb{C})$

HAVE INFINITE MANY IRREPS, NO
A PROBLEM FOR THIS ARGUMENT.

BUT: $GL(n, \mathbb{C})$ HAS AN ABELIAN
SUBGROUP

$$T = \left\{ \begin{pmatrix} t_1 & & 0 \\ & \ddots & \\ 0 & & t_n \end{pmatrix} \mid t_i \in \mathbb{C}^* \right\} \cong (\mathbb{C}^*)^n$$

CALLED THE MAXIMAL TORUS.

$\chi_{\pi}(g) = \chi_{\pi}(hgh^{-1})$ FOR ANY
 $h \in G = GL(n, \mathbb{C})$ SO THE CHARACTER
 IS DETERMINED BY ITS VALUES ON
 A SET OF REPS OF THE CONJUGACY
 CLASSES. FOR g IN A DENSE
 SUBSET OF $GL(n, \mathbb{C})$ g IS CONJUGATE

TO A DIAGONAL ELEMENT
(JORDAN CANONICAL FORM).

$$g \sim \begin{pmatrix} J_1 & & \\ & \ddots & \\ & & J_r \end{pmatrix}$$

ONE BY ONE
J_i IS 1x1
UNLESS g HAS
REPEATED EIGENVALUES

$$J = \begin{pmatrix} t & & & \\ & \ddots & & 0 \\ & & \ddots & \\ 0 & & & t_1 \end{pmatrix} \quad (\text{RARE.})$$

so $\chi_n(g)$ is $\det(t - g)$

$$\chi_n(t) \text{ with } t = \begin{pmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{pmatrix}$$

DIAGONAL.

STANDARD REP'N;

$$GL(n, \mathbb{C}) \rightarrow GL(n, \mathbb{C})$$

$$\chi_n \begin{pmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{pmatrix} = \sum t_i = \Delta_{(1,0,\dots,0)}(t_1, t_2, \dots, t_n)$$

SYMMETRIC n -TH POWER OF STANDARD
REP'

$$\begin{aligned} \bar{\pi}_{V^n \mathbb{C}^n} : GL(n, \mathbb{C}) &\rightarrow GL(V^n \mathbb{C}^n) \\ &= GL\left(\binom{n+n-1}{n}, \mathbb{C}\right) \end{aligned}$$

$$\chi_n \begin{pmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{pmatrix} = \sum_{i_1 \leq i_2 \leq \dots \leq i_n} t_{i_1} t_{i_2} \dots t_{i_n}$$

$$\begin{aligned} h_n(t_1, \dots, t_n) & \quad \text{COMPLETE} \\ &= \Delta_{(n,0,\dots,0)}(t) \quad \text{SYM. POLY.} \end{aligned}$$

$$\begin{aligned} \bar{\pi}_{\wedge^n \mathbb{C}^n} : GL(n, \mathbb{C}) &\rightarrow GL(\wedge^n \mathbb{C}^n) \\ &= GL\left(\binom{n}{n}, \mathbb{C}\right) \end{aligned}$$

$$\chi_n(t_1, \dots, t_n) = \sum_{i_1 < i_2 < \dots < i_k} t_{i_1} \cdots t_{i_k}$$

IT IS ZERO UNLESS $k \leq n$. (assume)

$$= \ell_n(t_1, \dots, t_n)$$

$$= D_{(\underbrace{1, 1, \dots, 1}_k, 0, \dots, 0)}(t)$$

$$= D_{(1^n)}(t)$$

ADJOINT REP'N:

$$GL(n, \mathbb{C}) \cap \text{MAT}_n(\mathbb{C}) = \mathbb{C}^{n^2}$$

$$\text{Ad}(g)(x) = g x g^{-1}$$

G ACTS ON Σ

$G \subset \Sigma$

$g: \Sigma \rightarrow \Sigma$

$$\chi_{\text{Ad}} \begin{pmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{pmatrix} = \sum_{i,j} t_i t_j^{-1}$$

consider a basis E_{ij} of $\text{MAT}_n(\mathbb{C})$

$E_{ij} = \begin{pmatrix} 0 & \dots & \\ \dots & 1 & \dots \\ 0 & \dots & \end{pmatrix}$ 1 in i, j
position,
zeros elsewhere.

$$\pi(t) E_{ij} = \underbrace{t_i t_j^{-1}}_{\text{EIGENVALUES}} E_{ij}$$

THIS REP'N IS REDUCIBLE.

$I \in \text{MAT}_n(\mathbb{C})$ is invariant

$$\chi_{ii}(t) = \sum_{i,j} t_i t_j^{-1}$$

$$= n + \sum_{i \neq j} t_i t_j^{-1}$$

contains.

from $i \neq j$. invariant

$$\text{MAT}_n(\mathbb{C}) = \mathbb{C} \cdot I \oplus \text{MAT}_n^0(\mathbb{C})$$

$\text{MAT}_n^0(\mathbb{C})$ = MATRICES OF TRACE 0.

THE REP'N ON $\text{MAT}_n^0(\mathbb{C})$ OF $\text{GL}(n^2-1)$

IS IRREDUCIBLE. (REDUCED ADJOINT)
REP'N

For $n = 3$

$$\begin{aligned} \chi_{\text{Ad}}(t) &= (n-1) + \sum_{i \neq j} t_i^{-1} t_j^{-1} \leftarrow \\ &= (t_1 t_2 t_3)^{-1} \Delta_{(2,1,0)}(t_1, t_2, t_3) \\ &\quad \uparrow \quad \downarrow \\ &\text{CHAR OF} \\ &\text{DETERMINANT.} \end{aligned}$$

For $GL(n)$ $\chi_{\text{Ad}} : (t_1 \dots t_n)^{-1} \Delta_{(2,1,\dots,1,0)}(t)$

Given $G \ltimes V$ a repn (n, V) of $GL(n, \mathbb{C})$

DECOMPOSE

$$V = \bigoplus_{\mu \in \mathbb{Z}^n} V_\mu \quad \dim V_\mu \geq 0$$

$\dots \dots$

" $\mu \in G \ltimes \mathbb{Z}^n$ "

$$V_{ss} = V_{(1,0,\dots,0)} \oplus V_{(0,1,0,\dots)} \oplus \dots$$

$$V_\mu = \left\{ v \in V \mid \pi(t_{i_1}^{\alpha_1} \cdots t_{i_n}^{\alpha_n})v = t^\mu v \right\}$$

$$t^\mu = t_1^{\mu_1} \cdots t_n^{\mu_n}.$$

$$\alpha_i = (0, \dots, \underbrace{1}_{\substack{\uparrow \\ i}}, \underbrace{-1}_{\substack{\uparrow \\ i+1}}, 0, \dots, 0)$$

“SIMPLE ROOTS”.

DEFINE OPERATORS

$$e_i: V_\mu \rightarrow V_{\mu + \alpha_i}$$

$$f_i: V_\mu \rightarrow V_{\mu - \alpha_i}$$

$$E_{i, i+1} = \begin{pmatrix} 0 & & & & \\ & \ddots & & & \\ & & 0 & 1 & \\ & & & 0 & \\ & & & & \ddots \end{pmatrix} \quad \begin{matrix} i, i+1 \\ \text{POSITION} \end{matrix}$$

$$\frac{d}{du} \pi(\exp(u E_{i, i+1}))v \Big|_{u=0} = e_i(v)$$

$$\pi v$$

for $GL(3)$ (G)

$$e_i(v) = \frac{d}{du} \left. \left(\prod \left(\begin{matrix} 1 & u \\ & 1 \end{matrix} \right) v \right) \right|_{u=0}.$$

IT MAY BE CALCULATED THAT

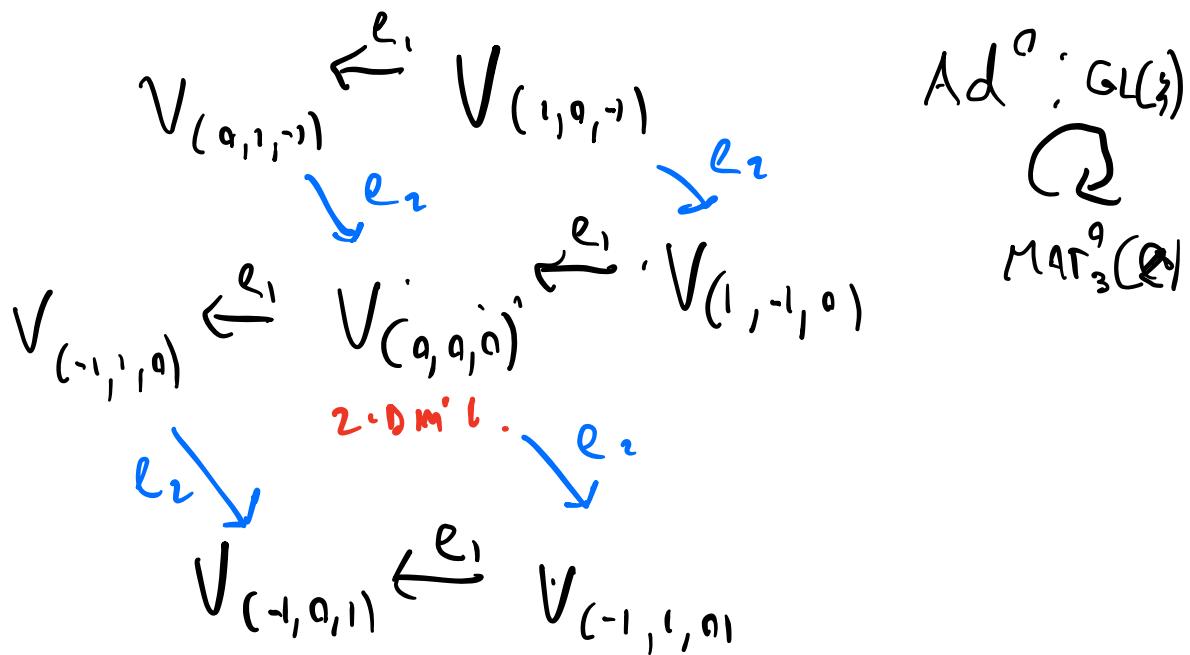
$$\text{IF } v \in V_n \text{ THEN } e_i(v) = V_{n+\alpha_i}.$$

SIMILARLY

$$f_n(v) = \frac{d}{du} \left. \left(\exp \left(u E_{n+1, n} \right) \right) v \right|_{u=0}$$

for Ad of $GL(3)$:

$$V_{(1,0,-1)} = \mathbb{C} E_{1,-2}$$



IS IT TRUE $f_i, \ell_i = \text{IDENTITY MAP}?$

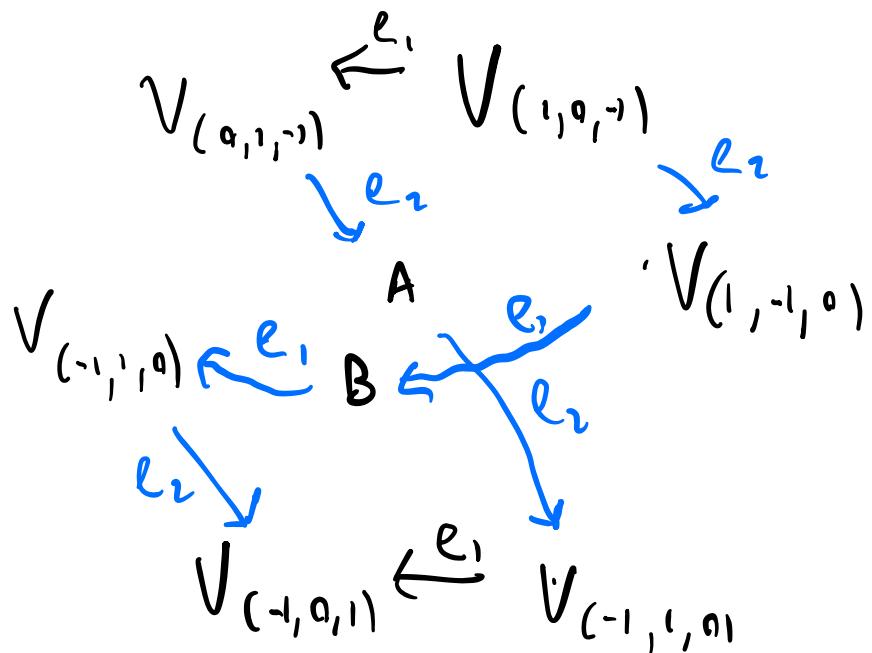
NO THESE MAPS ARE A LITTLE
MESSY.

HOWEVER, THIS PICTURE HAS
DEFORMATION (FROM QUANTUM GROUPS)

AND CAN BE REPLACED BY A
PICTURE IN WHICH THE MAPS ARE

NEAT AND TIDY.

IN THE MODIFIED PICTURE $V_{(0,0,0)}$
WITH DECOMPOSE INTO TWO SPACES
AND PICTURES WILL BE:



"CRYSTAL"

$$GL(1) \cong \mathbb{C}^{\times}$$

$$U(1) \cong \mathbb{T} = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

ANALYTIC REP'N

$$\mathbb{C}^{\times} \rightarrow GL(V)$$

IS DIAGONALIZABLE.

$$a \rightarrow \begin{pmatrix} a^{n_1} & & & \\ & a^{n_2} & & \\ & & \ddots & \end{pmatrix}$$

DEF'D BY RESTRICTION TO $U(1)$